If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-24x-16=0
a = 6; b = -24; c = -16;
Δ = b2-4ac
Δ = -242-4·6·(-16)
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{15}}{2*6}=\frac{24-8\sqrt{15}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{15}}{2*6}=\frac{24+8\sqrt{15}}{12} $
| −5/6e−2/3e=−24e= | | 40x=31x | | 4/5a+8=a/5+29 | | 2x–11=7x+16 | | 1.97/s=-1 | | -5y+3y+y=-27 | | 6=d-3 | | x/36+1=3 | | 3(-2-1)=6x+4-1 | | 53x=18x | | 3(9-9x-4x)+8(3x+4)=11 | | 2x—11=7x+16 | | –12t+3t=18 | | -4x-4/7+19=3x-3 | | 10x-11+3x-1+3x+1=180 | | 3.34=5.5-k | | 3(-2–1)=6x+4-1 | | 8/t/t=4 | | 1/5g-13=-23 | | -12+3/5x=24 | | 6m-m=5/6(m-10) | | n+102/27=5 | | -6(7x+9)=198 | | 14-5a=-8(7+5a) | | 5+p=-7+3p | | –14c+6c=–8 | | -9(8-4w)=17-17 | | 3x+1-5x=x-6+4x | | -5x+10=22-x | | 2x+129=180 | | -12.32/y=-4 | | 3/33=x/22 |